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INTRODUCTION

Radiation oncology (RO) is a rapidly evolving branch of oncology, and up to half of all cancer 
patients will require radiotherapy (RT) intervention at some point in the course of their disease.[1] 
With immense technological development, radiation planning and delivery have become precise 
and accurate, and consequently, the processes involved have become complex. This complexity 
has added another dimension to the already existing problem of adequately trained staff, that is, 
time-consuming workflows. In addition, predictive analyses of RT plans and delivered doses will 
be required soon to improve the quality of RT plans.

Artificial intelligence (AI) has shown promising applications in healthcare. In contrast to simple 
automation [Figure 1], it involves learning complex rules and patterns from historical data, which 
are then used to predict outcomes or simplify complex tasks. In this scoping review, we will 
discuss the application of AI to increase the efficiency, accuracy, and quality of the RT workflow, 
which may improve value-based cancer care delivery in resource-constrained settings.

ARTIFICIAL INTELLIGENCE IN RADIATION ONCOLOGY

The RO cancer care continuum includes treatment decisions, planning, delivery, and follow-
up. In addition, treatment planning comprises several sub-processes: target and normal tissue 
segmentation, inverse planning, dose optimization, decision support, quality assurance (QA), 
and outcome prediction. The efficiency of these procedures can be enhanced by integrating AI, 
and progress has been made in tasks like contouring and planning.

ABSTRACT
Technological advances have revolutionized the field of radiation oncology (RO) as more and more departments 
are now equipped with modern linear accelerators and planning systems, resulting in the generation of a 
considerable amount of clinical, imaging, and dosimetric data. Artificial intelligence (AI) can utilize all these 
data points to create models which can expedite decision-making, treatment planning, and response assessment. 
However, various roadblocks impede the speed of development in this field. While data quality and security are 
the top priorities, legal and ethical issues are equally important. This scoping review provides an overview of the 
emerging possibilities resulting from an integration of modern RO workflow and AI-based technologies.
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The broad application of AI in RO can be divided into two 
parts:
1. Process-driven AI

a. Decision tools
b. Segmentation
c. RT planning
d. Dose optimization
e. QA
f. Treatment delivery

2. Outcome-driven AI (Predictive Modeling)
a. Prognostication
b. Response assessment
c. Toxicity prediction.

PROCESS-DRIVEN AI – DECISION TOOLS

The magnitude and rate of data accumulation have 
challenged our ability to analyze, interpret and apply multiple 
data points simultaneously. For example, in a study[2] among 
specialized thoracic radiation oncologists (ROs) (experience 
ranging from 3 to 20 years), the predicted treatment outcome 
of lung cancer patients was no better than a random guess 
(AUC ranging from 0.52 to 0.59), while AI based model 
performance was significantly better (AUC of 0.61 to 0.77). 
Another example is the prediction of complications and 
emergency visits before starting radiation treatment, which 
improves the existing clinical workflow.[3] Synthesizing 
accumulating evidence concerning patients’ clinical/imaging 
data and objectively determining appropriate therapy is 
becoming more taxing. AI has the potential to speed up 
this process, presumably without introducing any subjective 
biases. Finally, while every RO applies their judgment to 
personalize RT plans based on their patient’s unique clinical/
imaging characteristics, AI can take this a step further by 
suggesting a specific treatment plan to achieve the optimal 
dose[4] based on predicted radiation sensitivity.[5]

PROCESS-DRIVEN AI – SEGMENTATION

Delineation of the gross disease (GTV) and associated 
regions of risk (CTV) are the cornerstones of modern RO, 
yet it is the most time-consuming step. It is well known 
that inter-observer variation in target delineation affects 
treatment outcomes,[6] and while auto-contouring solutions 
provided by commercial vendors of treatment planning 
systems have attempted to accelerate this process,[7,8] their 
acceptance remains low. Although based on a knowledge-
based framework, the efficiency of auto-contouring 
algorithms remain variable and frequently generates 
incorrect contours due to inherent limitations[9] (especially 
near soft tissues[10]), which require manual corrections. 
This defeats the purpose of “auto-contouring” as it exists 
today.

Deep learning techniques such as convolutional neural 
networks or adversarial neural networks hold promise in 
this field as the performance of these algorithms reaches 
close to human levels both for tumors[11] and normal tissue 
segmentation.[12] Nevertheless, further research is required 
to generate high-quality prospective data with robust 
external validation and broader generalizability before these 
algorithms are widely adopted in the clinical workflow.

PROCESS-DRIVEN AI – RT PLANNING

RT planning involves patient positioning and immobilization 
before performing the simulation computed tomography 
(CT) scan. Depending on the disease site, this process 
can be very involved and requires coordination between 
ROs, physicists, and technologists. AI solutions can predict 
probable dose distributions based on diagnostic images;[4] 
Similarly, we can predict the optimal treatment position 
and immobilization so that the whole simulation process is 
streamlined.

Figure 1: The difference between automation and artificial intelligence.
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Patients requiring specialized treatment techniques such as 
Deep Inspiration Breath Hold (DIBH) for left-sided breast 
cancer usually undergo 3  days of assessment to determine 
eligibility for this technique. Deep learning-based algorithms 
can be used on routine X-ray chest images[13] to identify their 
eligibility for DIBH and help in better resource utilization 
and patient care. In addition, generating synthetic CT scans 
from magnetic resonance imaging (MRI) using generative 
adversarial networks[14] can further smoothen the simulation 
workflow as the patient does not have to undergo RT planning 
CT scans if they have already undergone RT planning MRI.

Image co-registration (between simulation CT and MRI or 
PET-CT) plays a key role in determining the true extent of 
the tumor, as combining information from different imaging 
modalities overcomes the limitations of the simulation CT 
alone. However, commercially available registration methods 
lack generalizability, while deep learning-based approaches 
perform better, are more robust, and are generalizable across 
multiple imaging modalities.[15] These AI applications can 
enhance the modern RT simulation workflow.

PROCESS-DRIVEN AI – DOSE OPTIMIZATION

The generation of a high-quality deliverable RT plan is a 
multi-step process. Several studies[4] have shown that optimal 
dose distribution can be predicted (along with identifying 
machine parameters to achieve this dose distribution), and 
dose calculation can be accelerated using a knowledge-
based approach.[16] Despite these advances, planning and 
dose optimization are not fully automated and frequently 
require human intervention, without which they can result in 
suboptimal dose distributions.[17]

Moreover, this approach is unsuitable for complex RT 
plans requiring photons and electrons. Recently, AI-based 
methods can generate RT plans comparable to or superior 
to humans.[18,19] The ideal solution would be to predict the 
best dose distribution followed by generating a treatment 
plan that matches closely to the predicted dose distribution, 
making the whole process fully automated.

PROCESS-DRIVEN AI – QA

QA involves patient-specific QA, aiming to detect human 
errors in treatment plans and anomalies in planning 
software. On the other hand, machine-related QA involves 
testing isolated parts of the treating machines. These 
processes involve many repetitive, time-consuming tasks. 
Patient-specific QA passing rates can be predicted using an 
AI algorithm that can flag the possible sources of errors, 
avoiding the need to measure physical doses.[20] In addition, 
the data acquired during the daily use of radiation machines 
can be used to predict future trends, and potential errors and 
improve machine-related QA efficiency.[21]

PROCESS-DRIVEN AI – TREATMENT DELIVERY

Patient scheduling for radiation treatment and on-treatment 
assessment can be made more efficient by utilizing AI 
approaches to identify the most important contributing 
factors to long waiting times.[22] Accurate treatment setup is 
one of the most crucial steps in overall radiation workflow 
and depends heavily on integrated cone beam CT (CBCT) 
devices. Although CBCT has revolutionized radiation 
treatment delivery by facilitating image-guided radiation 
therapy, poor image quality is a significant issue affecting 
the overall setup verification and treatment delivery time. 
AI has been used to improve the quality of these images by 
generating higher-resolution images, making it easier to 
match them with the simulation CT scan, thus speeding up 
the time for setup verification.[23] In addition, moving organs 
such as the lung and liver require real-time tumor tracking, 
and AI has shown great potential to accurately track tumor 
motion by predicting the anticipated trajectory of the tumor 
within milliseconds.[24]

OUTCOME-DRIVEN AI – PROGNOSIS, 
RESPONSE, AND FOLLOW-UP

Be it RO or any other field of medicine, understanding 
the prognosis of a particular condition and predicting 
response is of utmost importance. Also significant is the 
toxicity associated with the proposed treatment. There has 
been an enormous effort by researchers to model relevant 
clinical factors to predict treatment outcomes in terms of 
treatment response and toxicity. Many machine learning 
and deep learning AI techniques have recently been 
utilized to demonstrate their potential for better overall 
survival, response, and toxicity prediction.[25-29] These AI-
based prediction models can provide precise point-of-care 
recommendations, thus enhancing clinical decision support.

Radiation planning dosimetric data can be integrated 
with orthogonal data like genomics, medical imaging, and 
electronic medical records to build robust Tumor Control 
Probability Models and Normal Tissue Complication 
Probability Models.[2,30] Radiomics is a field of medical 
imaging analytics where features are extracted from images 
based on complex interrelationships of pixels and voxels.[31] 
The amount of data extracted through the radiomics approach 
is enormous and needs AI-based techniques to make sense 
of this data. Initially, it was reported for the prognostication 
of lung cancer patients who underwent definitive RT,[32] 
following which many studies were initiated to study other 
outcomes like response prediction,[33] toxicity prediction,[34] 
determining the nature of lung nodules and exploring 
imaging genomics[35,36] to name just a few. Although much 
research is being done in these fields, we do not have any 
validated model for routine clinical use.
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ISSUES AND CHALLENGES

The radiomics approach mentioned above has been studied 
extensively but often fails or lacks external validation[37] 
because of a bias toward tumor volume.[38,39] In addition, deep 
learning techniques have been criticized for their “black-
box” nature (despite their excellent accuracy), as we are not 
fully aware of the reasons for their prediction. To tackle this, 
recently, there has been a focus on Explainable AI,[40] and if 
widely implemented, it will eventually drive adoption by AI 
skeptics.

Another significant challenge is the availability of high-
quality datasets for AI-Model training and validation. 
Therefore, our primary emphasis must be on high-quality 
data collection and curation, as a lack of consistency in 
standardizing this medical data impedes progress in this 
field.[41-43]

Once medical data in institutional databases are 
standardized, the next challenge is to form multi-institutional 
collaborations across all possible geographic locations. At 
present, models are being trained on locally available limited-
size datasets, thus creating better-performing models only on 
that localized geographic entity and lack generalizability. This 
is a consequence of the legal and ethical issues encompassing 
sharing medical data between different institutions, as the 
patient’s right to privacy and data protection is an essential 
prerequisite that must be fulfilled at any cost.[44,45]

An important step toward overcoming this hurdle is 
federated model training, where medical data does not leave 
the institution’s database. Instead, only model training is 
done in each institution, and the parameters learned from 
each model are combined, thus incorporating all geographic 
heterogeneities and resulting in a generalized model that may 
work globally.[46] In addition, this can overcome racial biases 
in AI algorithms and make them ethically sound.[47]

It is also anticipated that the dynamics of the patient-doctor 
relationship will change with the utilization of AI, and 
the focus will be on the patient-healthcare establishment 
relationship. However, we must also be forewarned that 
unethical AI practices pose a unique challenge,[48] and a 
strong technical and legal infrastructure needs to be created 
to protect patients and organizations.

CONCLUSION

AI and RO form a comfortable blend and can lead to a 
perfect example of integrated AI-guided workflow. AI-
based approaches can be applied to every aspect of the RT 
workflow continuum. As the modern RO department adopts 
more and more of these approaches, the efficient utilization 
of resources will lead to all stakeholders (ROs, medical 
physicists, and radiation technologists) spending less time on 

technical processes and more time optimizing outcomes for 
our patients. The steady march of technological advancement 
leads to a fear of becoming redundant, yet with history as a 
witness, each significant step forward in our specialty has 
shifted our responsibilities. The approaching integration of 
AI is no different.
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